Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.
نویسندگان
چکیده
Tumors produce multiple growth factors, but little is known about the interplay between various angiogenic factors in promoting tumor angiogenesis, growth, and metastasis. Here we show that 2 angiogenic factors frequently upregulated in tumors, PDGF-BB and FGF2, synergistically promote tumor angiogenesis and pulmonary metastasis. Simultaneous overexpression of PDGF-BB and FGF2 in murine fibrosarcomas led to the formation of high-density primitive vascular plexuses, which were poorly coated with pericytes and VSMCs. Surprisingly, overexpression of PDGF-BB alone in tumor cells resulted in dissociation of VSMCs from tumor vessels and decreased recruitment of pericytes. In the absence of FGF2, capillary ECs lacked response to PDGF-BB. However, FGF2 triggers PDGFR-alpha and -beta expression at the transcriptional level in ECs, which acquire hyperresponsiveness to PDGF-BB. Similarly, PDGF-BB-treated VSMCs become responsive to FGF2 stimulation via upregulation of FGF receptor 1 (FGFR1) promoter activity. These findings demonstrate that PDGF-BB and FGF2 reciprocally increase their EC and mural cell responses, leading to disorganized neovascularization and metastasis. Our data suggest that intervention of this non-VEGF reciprocal interaction loop for the tumor vasculature could be an important therapeutic target for the treatment of cancer and metastasis.
منابع مشابه
VEGF-A and FGF-2 synergistically promote neoangiogenesis through enhancement of endogenous PDGF-B-PDGFRbeta signaling.
Combined stimulation with VEGF-A, FGF-2, or PDGF-BB has emerged as a potent strategy for therapeutic angiogenesis, although the mechanisms underlying the synergism of these factors are not well understood. In the present study, we investigated the mechanism of synergism between VEGF-A and FGF-2 by using Matrigel plug assay in vivo and embryonic stem cell (ESC)-derived VEGF receptor 2 (VEGFR2)-p...
متن کاملSerial measurements of serum PDGF-AA, PDGF-BB, FGF2, and VEGF in multiresistant ovarian cancer patients treated with bevacizumab
UNLABELLED INTRODUCTION Anti-VEGF treatment has proven effective in recurrent ovarian cancer. However, the identification of the patients most likely to respond is still pending. It is well known that the angiogenesis is regulated by several other pro-angiogenic proteins, e.g. the platelet - derived growth factor (PDGF) system and the fibroblast growth factor (FGF) system. These other signal...
متن کاملAngiogenesis stimulated by PDGF-CC, a novel member in the PDGF family, involves activation of PDGFR- and - receptors
A newly discovered PDGF isoform, PDGF-CC, is expressed in actively angiogenic tissues such as placenta, some embryonic tissues, and tumors. We test the possibility that PDGF-CC promotes angiogenesis in vivo. The core domain (mature form) of human PDGF-CC is sufficiently potent to stimulate neovascularization in the mouse cornea. The corneal angiogenic response induced by PDGF-CC is robust altho...
متن کاملVEGF-C regulates lymphangiogenesis and capillary stability by regulation of PDGF-B.
Emerging evidence indicates that the tight communication between vascular endothelial cells and mural cells using platelet-derived growth factor (PDGF)-BB is essential for capillary stabilization during the angiogenic process. However, little is known about the related regulator that determines PDGF-BB expression. Using murine models of therapeutic neovascularization, we here show that a typica...
متن کاملIndirect angiogenic cytokines upregulate VEGF and bFGF gene expression in vascular smooth muscle cells, whereas hypoxia upregulates VEGF expression only.
BACKGROUND Hypoxia and indirect angiogenic factors may stimulate angiogenesis via induction of endothelial cell mitogen(s). To evaluate this hypothesis, we investigated whether low oxygen tension or cytokines known to promote neovascularization in vivo could modulate the expression of either vascular endothelial growth factor (VEGF) or basic fibroblast growth factor (bFGF) in human vascular smo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 117 10 شماره
صفحات -
تاریخ انتشار 2007